Classification of monosaccharides
Monosaccharides
are classified according to three different characteristics: the
placement of its carbonyl group, the number of carbon atoms it contains,
and its chiral handedness. If the carbonyl group is an aldehyde, the
monosaccharide is an aldose; if the carbonyl group is a ketone, the
monosaccharide is a ketose. Monosaccharides with three carbon atoms are
called trioses, those with four are called tetroses, five are called
pentoses, six are hexoses, and so on.
These two systems of
classification are often combined. For example, glucose is an aldohexose
(a six-carbon aldehyde), ribose is an aldopentose (a five-carbon
aldehyde), and fructose is a ketohexose (a six-carbon ketone).Each carbon atom bearing a hydroxyl group (-OH), with the exception of the first and last carbons, are asymmetric, making them stereocenters with two possible configurations each (R or S). Because of this asymmetry, a number of isomers may exist for any given monosaccharide formula. The aldohexose D-glucose, for example, has the formula (C·H2O)6, of which all but two of its six carbons atoms are stereogenic, making D-glucose one of 24 = 16 possible stereoisomers. In the case of glyceraldehyde, an aldotriose, there is one pair of possible stereoisomers, which are enantiomers and epimers. 1,3-dihydroxyacetone, the ketose corresponding to the aldose glyceraldehyde, is a symmetric molecule with no stereocenters). The assignment of D or L is made according to the orientation of the asymmetric carbon furthest from the carbonyl group: in a standard Fischer projection if the hydroxyl group is on the right the molecule is a D sugar, otherwise it is an L sugar. The "D-" and "L-" prefixes should not be confused with "d-" or "l-", which indicate the direction that the sugar rotates plane polarized light. This usage of "d-" and "l-" is no longer followed in carbohydrate chemistry.
Ring-straight chain isomerism
The aldehyde or ketone group of a straight-chain monosaccharide will react reversibly with a hydroxyl group on a different carbon atom to form a hemiacetal or hemiketal, forming a heterocyclic ring with an oxygen bridge between two carbon atoms. Rings with five and six atoms are called furanose and pyranose forms, respectively, and exist in equilibrium with the straight-chain form.During the conversion from straight-chain form to cyclic form, the carbon atom containing the carbonyl oxygen, called the anomeric carbon, becomes a stereogenic center with two possible configurations: The oxygen atom may take a position either above or below the plane of the ring. The resulting possible pair of stereoisomers are called anomers. In the ''α anomer'', the -OH substituent on the anomeric carbon rests on the opposite side (trans) of the ring from the CH2OH side branch. The alternative form, in which the CH2OH substituent and the anomeric hydroxyl are on the same side (cis) of the plane of the ring, is called the ''β anomer''. You can remember that the β anomer is cis by the mnemonic, "It's always better to βe up". Because the ring and straight-chain forms readily interconvert, both anomers exist in equilibrium. It has many uses such as a significant role in the paper and textile industries, and is used as a feedstock for the production of rayon (via the viscose process), cellulose acetate, celluloid, and nitrocellulose. Chitin has a similar structure, but has nitrogen-containing side branches, increasing its strength. It is found in arthropod exoskeletons and in the cell walls of some fungi. It also has multiple uses, including surgical threads.
Other polysaccharides include callose or laminarin, chrysolaminarin, xylan, mannan, fucoidan, and galactomannan
Tidak ada komentar:
Posting Komentar